Schema Artifacts¶
This section provides access to machine-readable schema artifacts for the Agentic Automation Canvas.
JSON Schema¶
The canonical JSON Schema definition:
- aac.schema.json: Complete JSON Schema definition (available after deployment)
This schema can be used for:
- Validation of canvas data
- IDE autocomplete and type checking
- Code generation
- Integration with validation libraries
YAML Schema¶
YAML representation of the schema:
- aac.schema.yaml: YAML version of the schema (available after deployment)
Schema Version¶
Current schema version: 0.10.1 (Beta)
Beta Status
This schema is currently in beta testing. The structure and fields may change before the 1.0.0 release. Feedback and testing are welcome during this phase.
The schema $id is: https://w3id.org/aac/schema/aac.schema.json
Usage¶
Validation¶
Validate a canvas file against the schema:
import json
import jsonschema
with open('canvas.json', 'r') as f:
canvas = json.load(f)
with open('aac.schema.json', 'r') as f:
schema = json.load(f)
jsonschema.validate(instance=canvas, schema=schema)
Programmatic Access¶
The schema can be loaded and used programmatically:
import json
import urllib.request
schema_url = "https://w3id.org/aac/schema/aac.schema.json"
with urllib.request.urlopen(schema_url) as response:
schema = json.load(response)
# Use schema for validation, code generation, etc.
Schema Structure¶
The schema defines:
- Main Properties: Top-level canvas structure
- Definitions: Reusable type definitions (
$defs) - Constraints: Validation rules, enums, patterns
- Metadata: Descriptions, examples, format hints
See the schema reference for detailed documentation of all types and properties.
Ontology Alignment¶
The AAC schema builds on established standards rather than reinventing common concepts. Generic fields align with well-known ontologies:
- Schema.org: Core properties like
title(schema:name),description,startDate,endDate,keywords,identifier,license,author, etc. - DCAT (Data Catalog Vocabulary): Dataset properties like
accessRights(dct:accessRights), data formats, and catalog metadata - PROV-O (Provenance Ontology): Provenance tracking for
startedAtTime,endedAtTime,wasAssociatedWith, and activity relationships - P-Plan (Plan Ontology): Requirements as plan steps (
requirements→ p-plan:hasStep), milestones (milestones→ p-plan:hasMilestone) - FRAPO (Funding, Research Administration & Projects Ontology): Research project extensions like
fundingGrant(frapo:fundingGrant),leadOrganization(frapo:leadOrganization),projectStage(frapo:hasStatus),deliverables(frapo:deliverable) - DUO (Data Use Ontology): Data use restrictions via
duoTerms(dct:conformsTo)
The schema reference includes an "Ontology" column indicating which standard each generic field maps to. Custom AAC-specific fields (like projectStage, aggregateBenefitValue, etc.) are clearly marked as such.
For detailed mapping documentation, see:
Versioning¶
The schema follows semantic versioning:
- Major versions: Breaking changes (incompatible)
- Minor versions: Additive changes (backward compatible)
- Patch versions: Bug fixes and documentation updates
See Conformance for versioning policy details.
Related Resources¶
- Schema Reference - Human-readable field documentation
- Examples - Example canvas files
- Validator - Validation tools and usage
- Specification - Complete specification documentation